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Inertial effect on the stability of viscoelastic
cone-and-plate flow
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(Received 20 April 1996 and in revised form 10 March 1997)

The stability of axially symmetric cone-and-plate flow of an Oldroyd-B fluid at
non-zero Reynolds number is analysed. We show that stability is controlled by two
parameters: E1 ≡ DeWe and E2 ≡ Re/We, where De, We, and Re are the Deborah,
Weissenberg and Reynolds numbers respectively. The linear stability problem is solved
by a perturbation method for E2 small and by a Galerkin method when E2 = O(1).
Our results show that for all values of the retardation parameter β and for all values
of E2 considered the base viscometric flow is stable if E1 is sufficiently small. As
E1 increases past a critical value the flow becomes unstable as a pair of complex-
conjugate eigenvalues crosses the imaginary axis into the right half-plane. The critical
value of E1 decreases as E2 increases indicating that increasing inertia destabilizes the
flow. For the range of values considered the critical wavenumber kc first decreases
and then increases as E2 increases. The wave speed on the other hand decreases
monotonically with E2. The critical mode at the onset of instability corresponds to
a travelling wave propagating inward towards the apex of the cone with infinitely
many logarithmically spaced toroidal roll cells.

1. Introduction
The flow of a viscoelastic fluid sheared between a cone and a plate has important

applications in rheometry. In steady shear rheometry it is assumed that the flow
remains stationary. Experiments, however, show that at high shear rates the stationary
viscometric flow is unstable (Magda & Larson 1988; McKinley et al. 1991; McKinley
et al. 1995). The first analysis of the stability of cone-and-plate flow of an Oldroyd-B
fluid was done by Phan-Thien (1985). Later, Olagunju & Cook (1993) analysed the
problem taking into account the weak secondary flow. Both of these analyses were
restricted to a class of von Kármán similarity solutions. Phan-Thien (1985) assumed
that the Reynolds number was zero and showed that the base flow loses stability when
the Deborah number, De, increases past a critical value given by Dec = π(2/5β)1/2.
Olagunju & Cook (1993) obtained for creeping flow (i.e. Reynolds number Re = 0)
the critical Deborah number Dec = π[2/(β(3 + 2β)]1/2. The discrepancy in the two
critical Deborah numbers is probably due to the fact that Olagunju & Cook took
into account the weak secondary flow. In Olagunju & Cook (1993) and Phan-Thien
(1985) it was shown that as the Deborah number increases past the critical value a
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real eigenvalue crosses the imaginary axis into the right half-plane leading to a loss of
stability. A bifurcation analysis of this problem has been done by Olagunju (1995a).

Contrary to the results predicted by the analyses referred to above, recent exper-
iments have shown that at a critical Deborah number the base flow loses stability
to a time-periodic solution and not to another stationary solution (Magda & Lar-
son 1988; McKinley et al. 1991, 1995). In addition, the solutions that bifurcate do
not correspond to solutions of von-Kármán similarity type. A numerical analysis of
the full linear stability problem for creeping flow was carried out by McKinley et
al. (1995). Olagunju (1995b) obtained analytical results for the stability problem for
an Oldroyd-B fluid. Although the analysis assumed that the gap angle is small, his
results, based on a short-wave model, agree very well with those obtained numerically
in McKinley al. (1995). Olagunju (1997) analysed the Hopf bifurcation problem for
Re = 0. Purely elastic instabilities have been observed and analysed for other flows
including parallel plate flow (Byars et al. 1994), the Taylor–Couette flow (Larson,
Shaqfeh & Muller 1990) and the Taylor–Dean flow (Joo & Shaqfeh 1992). Joo &
Shaqfeh (1994) have also analyzed the effect of inertia on the Taylor–Dean flow.

In this paper we examine the linear stability problem for cone-and-plate flow of an
Oldroyd-B fluid when the Reynolds number is non-zero. This problem will be solved
using a perturbation method when inertia is small and a Galerkin method when
the Reynolds number is not necessarily small. Some results for the upper convected
Maxwell model were reported in Olagunju (1996). Our results show that inertia tends
to destabilize the flow. We also show that the wavenumber of the most unstable mode
first decreases and then increases as inertia increases. The speed of travelling waves
on the other hand decreases with increasing inertia.

In this paper we will consider only axially symmetric perturbations. Although the
experiments reported by McKinley et al. (1995) show that for the particular fluid
used, the most unstable mode was a non-axially symmetric logarithmic spiral wave,
their linear stability analysis does not however preclude bifurcations to axisymmetric
travelling waves. What they found was that the most unstable mode was strongly
dependent on fluid rheology and cone size. Their linear stability analysis shows that
for a fluid with solvent viscosity (in our notation) β < 0.4, the most unstable modes
were axially symmetric. In their experiments they observed axisymmetric waves when
the conical fixture was 6◦ for a fluid with β = 0.16. For a fluid with β = 0.41
they observed mostly non-axisymmetric spirals but even in this case they reported
that sometimes they saw both axially symmetric and non-axially symmetric modes
coexist suggesting possible mode interactions. In McKinley et al. (1995), it was
reported that S. J. Muller had also observed axisymmetric instabilities in experiments
with a cone-and-plate device. In addition Byars et al. (1994) observed axisymmetric
vortices in experiments with parallel plates. They also noted that in some cases
both axisymmetric and non-axisymmetric modes appeared to coexist. The only way
to resolve the issue satisfactorily is to do a nonlinear analysis. Inertial effects on
non-axisymmetric disturbances are currently under investigation.

2. Problem formulation
Consider a cone-and-plate system with gap angle α in which the cone is rotated at a

constant angular speed $ . The equations governing the flow of are (Bird, Armstrong
& Hassager 1987),

∇ · ṽ = 0, (2.1)
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ρ̃
Dṽ

Dt
= −∇p̃+ ∇ · T̃ . (2.2)

For the constitutive law we use the Oldroyd-B model for which the stress can be
written

T̃ = 2ηsD + τ̃ (2.3)

where τ̃ , the Maxwell stress, satisfies the equation

τ̃ + λ

(
Dτ̃

Dt̃
− Lτ̃ − τ̃LT

)
= 2ηpD . (2.4)

Here ṽ is the velocity, p̃ is the pressure, ρ̃ is the density, λ is the relaxation time, ηs is
the solvent viscosity and ηp is the polymer viscosity; L is the velocity gradient tensor
and D its symmetric part. The above system of equations is to be solved subject to
no-slip conditions at the solid boundaries. Let (r̃, φ, θ) be spherical coordinates. The
problem is to be solved in the domain

0 6 r̃ 6 a, (π/2− α) 6 φ 6 π/2, 0 6 θ 6 2π.

The analysis of (2.1)–(2.4) is very intractable. In Olagunju (1995b) a perturbation
technique based on a short-wave analysis was used to obtain a set of equations which
is more tractable. With some modification that analysis can be extended to the case
where the Reynolds number Re 6= 0.

Following Olagunju (1995b) we non-dimensionalize as follows:

r̃ = αar, γ̇t̃ = t, p̃ = ηγ̇p, (2.5)

ṽ = αa$(ru, rv, rw) (2.6)

τ = ηγ̇

 Σ ζ γ
ζ Γ Π
γ Π ∆/α

 , (2.7)

where $ is the angular speed of the cone, γ̇ = $/α is the shear rate and a is the
plate radius. It has been shown (McKinley et al. 1991, 1995, Olagunju 1995b) that
the most dangerous modes have short wavelengths with wavenumbers of O(α−1).
Consequently in Olagunju (1995b) we adopted the scaling r = ρα and for convenience
we let ψ = (π/2− φ)/α so that ψ = 0 on the plate and ψ = 1 on the cone. Note that
ρ is not related to the density ρ̃. The domain of the problem is now

0 6 r 6 1/α, 0 6 ψ 6 1, 0 6 θ 6 2π.

2.1. Small gap theory

Following Olagunju (1995b), and assuming axial symmetry, the leading-order equa-
tions for α� 1, are

ρ
∂u

∂ρ
− ∂v

∂ψ
= 0, (2.8)

Re

(
∂u

∂t
+ uρ

∂u

∂ρ
− v ∂u

∂ψ

)
= −ρ∂p

∂ρ
+ ρ

∂Σ

∂ρ
− ∂ζ

∂ψ
− ∆+ (1− β)∇2u, (2.9)

Re

(
∂v

∂t
+ uρ

∂v

∂ρ
− v ∂v

∂ψ

)
=
∂p

∂ψ
+ ρ

∂ζ

∂ρ
− ∂Γ

∂ψ
+ (1− β)∇2v, (2.10)

Re

(
∂w

∂t
+ uρ

∂w

∂ρ
− v ∂w

∂ψ

)
= ρ

∂γ

∂ρ
− ∂Π

∂ψ
+ (1− β)∇2w, (2.11)
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Σ +We
∂Σ

∂t
= −We

(
uρ
∂Σ

∂ρ
− v ∂Σ

∂ψ
− 2ρ

∂u

∂ρ
Σ + 2

∂u

∂ψ
ζ

)
+ 2βρ

∂u

∂ρ
, (2.12)

ζ +We
∂ζ

∂t
= −We

(
uρ
∂ζ

∂ρ
− v ∂ζ

∂ψ
− Σρ∂v

∂ρ
+ Γ

∂u

∂ψ

)
+ β

(
ρ
∂v

∂ρ
− ∂u

∂ψ

)
, (2.13)

γ+We
∂γ

∂t
= −We

(
uρ
∂γ

∂ρ
− v ∂γ

∂ψ
− Σρ∂w

∂ρ
− γρ∂u

∂ρ

)
−We

(
Π
∂u

∂ψ
+ ζ

∂w

∂ψ

)
+ βρ

∂w

∂ρ
,

(2.14)

Γ +We
∂Γ

∂t
= −We

(
uρ
∂Γ

∂ρ
− v ∂Γ

∂ψ
− 2ζρ

∂v

∂ρ
+ 2Γ

∂v

∂ψ

)
− 2β

∂v

∂ψ
, (2.15)

Π +We
∂Π

∂t
= −We

(
uρ
∂Π

∂ρ
− v ∂Π

∂ψ
− γρ ∂v

∂ρ

)
−We

(
−ζρ∂w

∂ρ
+Π

∂v

∂ψ
+ Γ

∂w

∂ψ

)
− β ∂w

∂ψ
, (2.16)

and

∆+We
∂∆

∂t
= −We

(
uρ
∂∆

∂ρ
− v ∂∆

∂ψ

)
− 2De

(
Π
∂w

∂ψ
− γρ∂w

∂ρ

)
. (2.17)

For small α the domain now becomes to leading order

0 6 ρ 6 ∞, 0 6 ψ 6 1, 0 6 θ 6 2π.

The no-slip boundary conditions in this case are

u = v = w = 0 on ψ = 0, (2.18)

and

u = v = 0, w = 1 on ψ = 1. (2.19)

In addition, we require u, v, and w to be bounded as ρ → 0 and as ρ → ∞. The
Laplacian is defined as

∇2 ≡ ρ2 ∂
2

∂ρ2
+ ρ

∂

∂ρ
+

∂2

∂ψ2
.

The dimensionless quantities appearing above are the Deborah number De ≡ λ$ ,
the Weissenberg number We ≡ λγ̇, the local Reynolds number Re ≡ (αr̃2$ρ̃)/η, and
the retardation parameter β ≡ ηp/(ηs + ηp).

Equations (2.8)–(2.19) admit a viscometric solution

u = v = 0, w = ψ, (2.20)

Σ = ζ = γ = Γ = 0, Π = −β, ∆ = 2βDe. (2.21)

3. Linear stability analysis
To determine the stability of the base flow we define small perturbations

q = q̄ + q̂ (3.1)

where q̄ is the base flow given by (2.20)–(2.21), and q̂ is the perturbation. Substituting
(3.1) in (2.8)–(2.19) and linearizing we obtain the following equations in which the
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hats have been dropped:

ρ
∂u

∂ρ
− ∂v

∂ψ
= 0, (3.2)

Re
∂u

∂t
= −ρ∂p

∂ρ
+ ρ

∂Σ

∂ρ
− ∂ζ

∂ψ
− ∆+ (1− β)∇2u, (3.3)

Re
∂v

∂t
=
∂p

∂ψ
+ ρ

∂ζ

∂ρ
− ∂Γ

∂ψ
+ (1− β)∇2v, (3.4)

Re

(
∂w

∂t
− v
)

= ρ
∂γ

∂ρ
− ∂Π

∂ψ
+ (1− β)∇2w, (3.5)

We
∂Σ

∂t
+ Σ = 2βρ

∂u

∂ρ
(3.6)

We
∂ζ

∂t
+ ζ = β

(
ρ
∂v

∂ρ
− ∂u

∂ψ

)
, (3.7)

We
∂γ

∂t
+ γ = −We

(
ζ − β ∂u

∂ψ

)
+ βρ

∂w

∂ρ
, (3.8)

We
∂Γ

∂t
+ Γ = −2β

∂v

∂ψ
, (3.9)

We
∂Π

∂t
+Π = −We

(
Γ − β ∂v

∂ψ

)
− β ∂w

∂ψ
, (3.10)

We
∂∆

∂t
+ ∆ = −2De

(
Π − β ∂w

∂ψ

)
. (3.11)

Note that because the Reynolds number depends on the local radius r̃ the system
of equations (3.2)–(3.11) is not separable. However, Re is bounded and of O(α).
Specifically, 0 6 Re 6 (αa2$ρ̃)/η. For small α, Re changes very little over the domain.
Therefore one may approximate the local Reynolds number by its maximum value
or even the averaged value

R̄e =
1

a

∫ a

0

Redr̃ =
α$ρ̃

aη

∫ a

0

r̃2dr̃ =
αa2$ρ̃

3η
.

In any case, we shall fix the value of Re and then solve the linearized problem by
separation of variables.

Introduce the stream function χ

u =
∂χ

∂ψ
, v = ρ

∂χ

∂ρ
,

and seek separated solutions of the form

(χ, w) = ρikeσt(Deq1, q2),

(p, Σ, ζ, γ, Γ ,Π, ∆) = ρikeσt(q3, q4, q5, q6, q7, q8, q9)

where qi = qi(ψ), k is positive and σ may be complex. First solve equations (3.6)–
(3.11) for q4 · · · q9, substitute these in (3.3)–(3.5) and eliminate p to obtain the following
equations:

(D2 − k2)2q1 + a11D
2q1 + a12q1 + a13D

2q2 = 0, (3.12)
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(D2 − k2)q2 + a21q2 + a22(D
2 − k2)q1 + a23q1 = 0, (3.13)

and boundary conditions

q1 = q
′

1 = 0 for ψ = 0, 1 (3.14)

q2 = 0 for ψ = 0, 1. (3.15)

Here D ≡ d/dψ. The coefficients† above are

a11 =
ω(1 + ω)E2

F
− 2ikβ(ω + 3)E1

(ω + 1)2F
, (3.16)

a12 = −ω(ω + 1)k2E2/F, (3.17)

a13 =
2β(ω + 2)

(ω + 1)F
, (3.18)

a21 = ω(1 + ω)E2/F, (3.19)

a22 =
ikβE1

(ω + 1)F
, (3.20)

a23 = −ik(ω + 1)E1E2/F, (3.21)

where ω = σWe, and F = ω(β − 1)− 1. There are two dimensionless groups in (3.12)
and (3.13), namely

E1 ≡ DeWe, E2 ≡ Re/We.

Note that we may also write E2 = (DeE)−1 where the local Ekman number E ≡
η/(α2r̃2$ρ̃). The base flow is stable if Re(ω) < 0 and unstable if Re(ω) > 0. Note that
if we introduce a new independent variable z = ψ − 1/2, equations (3.12) and (3.13)
and boundary conditions (3.14), (3.15) remain unchanged except that the boundary is
now at z = ±1/2. In this variable the linear boundary value problem has both even
and odd solutions. Since we are interested in the first eigenvalue of the problem we
shall restrict our subsequent analyses to finding only even solutions.

3.1. E2 � 1: a perturbation approach

In many applications E2 is very small. For example in the experiments of McKinley
et al. (1991) the maximum Reynolds number recorded corresponds to E−1 6 0.0023.
So for a typical value of the Deborah number at criticality (e.g. De = 1.5) this gives
E2 ' 10−3. For E2 = 0 equations (3.12)–(3.15) can be solved exactly. Note that since
E2 = αRe/De,E2 may be small for a Reynolds number of order unity provided the
gap angle α is small enough. In Olagunju (1995b) it was shown that the neutral
stability surface for Re = 0, corresponding to the smallest eigenvalue, is given by

Ec1 = E10, (3.22)

E10 =
Λ

k

ω0(2− β)[(β − 1)ω2
0 + 1]

β[(β − 1)ω2
0 + 3− 2β]

(3.23)

and Λ is the value of a11 − a13a22 when E2 is zero. On this surface ω = iω0 is purely
imaginary and ω0 is the real root of the equation

(1− β)3ω6
0 + (1− β)(5β2 − 13β + 7)ω4

0 + (3− 7β + 7β2 − 2β3)ω2
0 + 2β − 3 = 0 (3.24)

† Some results for the upper convected Maxwell case (β = 1) were reported in Olagunju (1996).
There are typographical errors in the coefficients a11, a12, and a21 reported there.
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β = 1 β = 0.75

k E11 ω1 E11 ω1

2.9 −0.329209 −0.011949 −0.880752 −0.024493
3.1 −0.325844 −0.012093 −0.872229 −0.024538
3.3 −0.323690 −0.012165 −0.866879 −0.024465
3.5 −0.322444 −0.012167 −0.863903 −0.024277
3.7 −0.321844 −0.012102 −0.862603 −0.023980
3.9 −0.321644 −0.011974 −0.862327 −0.023580
4.1 −0.321603 −0.011787 −0.862432 −0.023085

Table 1. Values of Ec11 and ω1 for selected values of k and β

N = 3 N = 4

E2 Ec1 ωc Ec1 ωc

(a) 0 21.17940 1.00001i 21.17937 1.00000i
10−4 21.17913 0.99999i 21.17909 0.99999i
10−2 21.15188 0.99857i 21.15184 0.99857i
10−1 20.91377 0.98588i 20.91373 0.98588i
1.0 19.29941 0.87549 19.29934 0.87549i

(b) 0 24.48259 1.28265i 24.48254 1.28265i
10−4 24.48214 1.28263i 24.48208 1.28263i
10−2 24.43751 1.28059i 24.43749 1.28059i
10−1 24.04997 1.26258i 24.04993 1.26258i
1.0 21.46352 1.11956i 21.46346 1.11956i

(c) 0 21.17941 1.00000i 21.17937 1.00000i
10−4 21.17930 0.99999i 21.17925 0.99999i
10−2 21.16793 0.99928i 21.16789 0.99928i
10−1 21.06754 0.99288i 21.06750 0.99288i
1.0 20.31642 0.93535i 20.31638 0.93535i

Table 2. Values of Ec1 and ωc for k = 3.1 and (a) β = 1.0, (b) β = 0.75, (c) β = 0.5

which minimizes E10. To obtain the neutral surfaces for E2 � 1 we use a perturbation
method. Expand as follows:

Ec1 = E10 + E11E2 + o(E2) (3.25)

and

ωc = i(ω0 + ω1E2 + o(E2)). (3.26)

In order to obtain the correction terms we substitute (3.25) and (3.26) into (3.12) and
(3.13) and equate coefficients of the same powers of E2. This gives a set of equations
which can be solved recursively. The leading-order equations are homogeneous and
possess non-trivial solutions. Higher-order equations are non-homogeneous and have
solutions only if certain solvability conditions are satisfied. Applying these conditions
for the O(E2) equations yields the values of ω1 and E11. Higher-order corrections may
be calculated the same way if desired. The values of E11 and ω1 for selected values of
k and β are given in table 1.

The preceding results show that the critical values of both E1 and ω decrease with
E2 indicating that inertia destabilizes the flow and that the speed of the most unstable
wave decreases with increasing inertia.
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Figure 1 (a, b). For caption see facing page.

3.2. E2 = O(1): a Galerkin method

For E2 = O(1) we use a standard Galerkin method (Finlayson 1972; Fletcher 1984)
to calculate the critical values of E1 at the onset of instability.

We expand q1 and q2 in terms of basis functions which satisfy the boundary
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Figure 1. Neutral stability curves in the (E1, k)-plane for (a) β = 1.0, (b) β = 0.75, (c) β = 0.5, and
selected values of E2.

conditions (3.14)–(3.15) as

q1 =

N∑
k=1

akΦk(z), (3.27)

and

q2 =

N∑
k=1

bkΨk(z), (3.28)

where

Φi(z) = (z2 − 1/4)2z2(i−1) (3.29)

and

Ψi(z) = (z2 − 1/4)z2(i−1), (3.30)

where z = ψ − 1/2. Note that this choice of basis functions gives an even solution.
Substituting (3.27) and (3.28) into (3.12) and (3.13) we obtain equations for the
residuals

R1(ai, bi, z) = 0 (3.31)

and

R2(ai, bi, z) = 0. (3.32)

Note that we have suppressed dependence on the parameters. Proceeding in the usual
way we multiply (3.31) by Φj and (3.32) by Ψj and integrate with respect to z from
−1/2 to 1/2 to obtain the linear system

Mx = 0 (3.33)

where x = (a1, · · · , aN, b1, · · · , bN) and M is a 2N × 2N matrix which depends nonlin-
early on the parameters. For equation (3.33) to have non-trivial solutions we must
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Figure 2. Variation of the critical elasticity number Ec1 with E2 when β = 1.

have

det(M) = 0. (3.34)

From equation (3.34) we obtain the neutral stability curves in the (E1, k)-plane for
any fixed value of the parameters E2, and β.

4. Discussion of linear stability results
The Galerkin procedure converges rapidly for a wide range of parameter values.

Taking N = 3 in (3.27) and (3.28) we obtain values of the eigenvalue correct to three
decimal places (see table 2). The neutral stability curves for selected values of the
retardation parameter β and the parameter E2 are given in figure 1(a–c). As evident
from the figures, for fixed values of β and E2, the neutral stability curve has a minimum
point (Ec1, kc). For E1 less than Ec1 the base flow is linearly stable. As E1 increases past
this value a pair of complex-conjugate eigenvalues crosses the imaginary axis into
the right half-plane leading to a loss of stability. For an eigenvalue pair (iωc, kc) we
also have the conjugate pair (−iωc,−kc). Note however that because the coefficients
in (3.12)–(3.13) are not even functions of k the pair (iωc,−kc) and (−iωc, kc) are not
eigenvalues. This means that there can be no standing wave solutions. This agrees
with the results of experiments of McKinley et al. (1995) in which only travelling
waves were observed.

From figure 2 we see that for the range of values considered Ec1 decreases as E2

increases. Thus for a fixed value of the Weissenberg number We, the flow becomes
more unstable as the Reynolds number Re increases. This trend is similar to what
was found for the Taylor–Dean and Taylor–Couette flows by Joo & Shaqfeh (1992,
1994). Since E1 = De2/α it follows that the critical Deborah number at the onset of
instability scales like α1/2.

The most unstable mode corresponds to the wavenumber kc. This critical wavenum-
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Figure 3. Variation of the critical wavenumber kc with E2 when β = 1.
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Figure 4. Variation of the critical frequency ωc with E2 when β = 1.

ber does not change much with either β or E2 and is approximately kc = 3.1. For the
values of E2 considered kc first decreases and then increases as E2 increases as shown
in figure 3.

From the transformation ρα = r, the critical eigenmode in dimensional physical
variables has the form Aeiσcγ̇t̃r̃ikc/αq(ψ) where A is a complex constant. Such a solution
is a travelling wave propagating inwards (since σc > 0) towards the apex of the cone
with speed (in the ln r̃, t̃-plane) c = ασcγ̇/kc. Since σc = ωc/We it follows that the
wave speed is c = (α$ωc)/(kcDec) where $ is the angular speed of the cone. Since Dec
scales like α1/2 it follows that c also scales like α1/2. The critical frequency ωc depends
on both β and E2. For fixed values of β, ωc decreases as E2 increases showing that
inertia tends to slow the waves down (see figure 4). This behaviour agrees with the
results of Joo & Shaqfeh (1992, 1994) for the Taylor–Dean and Taylor–Couette flows.
The dependence on the retardation parameter is more complicated. As shown in
Olagunju (1995b), for E2 = 0, the critical frequency increases as β increases reaching
a maximum of about 1.3 at β ' 0.8 and then decreases monotonically to 1 at β = 1.
This general trend appears to hold for the selected values of E2 shown in table 3. The
stream function for this critical eigenmode has infinitely many logarithmically spaced
toroidal roll cells.
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β = 0.25 β = 0.5 β = 0.75 β = 1
E2 = 0 0.81 1.0 1.28 1.0
E2 = 0.25 0.80 0.98 1.23 0.97
E2 = 0.50 0.79 0.97 1.19 0.93
E2 = 0.75 0.78 0.95 1.15 0.90
E2 = 1.0 0.77 0.94 1.12 0.87

Table 3. Values of the critical frequency ωc for selected values of E2 and β

5. Mechanism of instability
Purely elastic instabilities in rotational shear flows have been reported in parallel-

plate flows (Byars et al. 1994), Taylor–Couette flow (Larson et al. 1990) and Taylor–
Dean flow (Joo & Shaqfeh 1992). A mechanism for this type of instability was
proposed by Larson et al. (1990) to explain the axisymmetric elastic instabilities
observed in the Taylor–Couette flow of an Oldroyd-B fluid. That idea was used used
by McKinley et al. (1995) to explain the axisymmetric elastic instability observed
in cone-and-plate flow and by Joo & Shaqfeh to explain the elastic instabilities
observed in Taylor–Dean flow. Joo & Shaqfeh (1992) have also used an energy
analysis to explain the instability mechanism for axisymmetric and non-axisymmetric
disturbances in the Taylor–Couette flow of an Oldroyd-B fluid. These analyses show
that the purely elastic instabilities under consideration are driven by hoop stresses
generated through the coupling between the base shearing flow, the perturbed velocity
gradients and the curved streamlines.

We will show that the instability path for the problem under consideration can be
explained by arguments similar to those developed by Larson et al. (1990) Note that
in the system under consideration here (i.e. α� 1), centrifugal forces are assumed to
be negligible and have therefore been ignored. Consider a small perturbation in the
meridional velocity gradient ∂v/∂ψ. This perturbation will be reflected in the normal
stress Γ which satisfies equation (3.8)

Γ +We
∂Γ

∂t
= −2β

∂v

∂ψ
. (5.1)

This perturbation couples with the base shearing flow to produce a perturbation in
the shear stress which (assuming that β is small) is given from (3.10) by

Π +We
∂Π

∂t
= −We

(
Γ − β ∂v

∂ψ

)
. (5.2)

The coupling between the perturbation shear stress and the base flow further causes
a perturbation in the hoop stress

∆+We
∂∆

∂t
= −2DeΠ. (5.3)

Because the streamlines are curved this additional hoop stress enters the momentum
equations which after neglecting unimportant terms are

Re
∂u

∂t
= −ρ∂p

∂ρ
− ∆+ (1− β)∇2u (5.4)
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and

Re
∂v

∂t
=
∂p

∂ψ
+ (1− β)∇2v. (5.5)

If now we seek a separated solution of the form u = eσtρikU(ψ)..., using the continuity
equation (3.2) and eliminating the pressure from (5.4) and (5.5), we obtain

(1− β)(D2 − k2)2U +
2ikβ(3 + ω)E1

(ω + 1)3
D2U − ωE2(D

2 − k2)U = 0 (5.6)

where D ≡ d/dψ and ω = σWe. Clearly (5.6) is a good approximation to equation
(3.12) when β � 1. Note that in the absence of elasticity (i.e. E1 = 0), equation (5.6)
implies that

ωE2 = −
(1− β)

∫ 1

0

(|D2U|2 + 2k2|DU|2)dψ∫ 1

0

(|DU|2 + k2|U|2)dψ
< 0. (5.7)

It follows that elasticity is the sole destabilizing factor in the flow. Therefore the path-
way to instability is the same as those for inertialess cone-and-plate flow (McKinley
et al. 1995) and parallel plate flow (Oztekin & Brown 1993). The effect of inertia in
this case is to reinforce the instability.

6. Summary
We have analysed the linear stability of axially symmetric cone-and-plate flow of

an Oldroyd-B fluid when inertia is present. The stability properties are governed
by two parameters: E1 ≡ DeWe and E2 ≡ Re/We, where De, We, and Re are the
Deborah, Weissenberg and Reynolds numbers respectively. For small values of E2

the Orr–Sommerfeld equations were solved by a perturbation method (see table 1).
For selected values of E2 the equations were also solved using a Galerkin method.
The results obtained from the two methods agree very well for E2 6 10−4. Our
results show that inertia tends to destabilize the flow. For example, for β = 0.75 and
k = 3.1 (see table 2(b)) the critical value of E1 decreases from 24.483 for creeping flow
(E2 = 0) to 21.463 when E2 = 1.0. For α = 0.1 this gives a Deborah number of 1.56
to 1.46. The neutral curve has a parabolic shape with an absolute minimum point.
For values of E1 less than the minimum the base flow is stable to perturbations of
all wavelengths. As E1 increases past this critical value the flow becomes unstable as
a pair of complex-conjugate eigenvalues ω crosses the imaginary axis into the right
half-plane. The most unstable eigenmode gives a travelling wave solution with waves
propagating inward towards the apex of the cone with infinitely many logarithmically
spaced toroidal roll cells. For small values of E2 the critical wavenumber at the
minimum point does not change much and is approximately 3.1. As E2 increases
from zero kc first decreases and then increases. The critical frequency ωc on the other
hand decreases monotonically with E2. Physically this means that as inertia increases
the speed of the travelling waves decreases.

In physical variables the critical wavenumber is κ = kc/α and thus scales like the
reciprocal of the gap angle. Thus as the cone angle decreases the critical wavenumber
will increase. This agrees with the observations of McKinley et al. (1995). The wave
speed and the critical Deborah number both scale like α1/2. It follows that as the cone
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angle decreases the observed waves will travel more slowly. This is also in agreement
with experimental observations (McKinley et al. 1995).

The principal mechanism responsible for this kind of instability is due to the
coupling between the curved streamlines and the perturbation velocity gradients. This
coupling produces additional hoop stresses which destabilize the flow.

The author would like to thank the referees for their helpful comments and
suggestions. Part of this research was done while the author was on sabbatical leave
at Virginia Tech. He wishes to thank Professors Robert Olin, Michael Renardy and
Yuriko Renardy for their hospitality.
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